Archive for the ‘Organizational Issues’ Category

Many people don’t realize that one of the (many) weaknesses of UZR, at least for the infield, is that it ignores any ground ball in which the infield was configured in some kind of a “shift” and it “influenced the play.” I believe that’s true of DRS as well.

What exactly constitutes “a shift” and how they determine whether or not it “influenced the play” I unfortunately don’t know. It’s up to the “stringers” (the people who watch the plays and input and categorize the data) and the powers that be at Baseball Info Solutions (BIS). When I get the data, there is merely a code, “1” or “0”, for whether there was a “relevant shift” or not.

How many GB are excluded from the UZR data? It varies by team, but in 2015 so far, about 21% of all GB are classified by BIS as “hit into a relevant shift.” The average team has had 332 shifts in which a GB was ignored by UZR (and presumably DRS) and 1268 GB that were included in the data that the UZR engine uses to calculate individual UZR’s. The number of shifts varies considerably from team to team, with the Nationals, somewhat surprisingly, employing the fewest, with only 181, and the Astros with a whopping 682 so far this season. Remember these are not the total number of PA in which the infield is in a shifted configuration. These are the number of ground balls in which the infield was shifted and the outcome was “relevant to the shift,” according to BIS. Presumably, the numbers track pretty well with the overall number of times that each team employs some kind of a shift. It appears that Washington disdains the shift, relatively speaking, and that Houston loves it.

In 2014, there were many fewer shifts than in this current season. Only 11% of ground balls involved a relevant shift, half the number than in 2015. The trailer was the Rockies, with only 92, and the leader, the Astros, with 666. The Nationals last year had the 4th fewest in baseball.

Here is the complete data set for 2014 and 2015 (as of August 30):

2014

Team GB Shifted Not shifted % Shifted
ari 2060 155 1905 8
atl 1887 115 1772 6
chn 1958 162 1796 8
cin 1938 125 1813 6
col 2239 92 2147 4
hou 2113 666 1447 32
lan 2056 129 1927 6
mil 2046 274 1772 13
nyn 2015 102 1913 5
phi 2105 177 1928 8
pit 2239 375 1864 17
sdn 1957 133 1824 7
sln 2002 193 1809 10
sfn 2007 194 1813 10
was 1985 116 1869 6
mia 2176 125 2051 6
ala 1817 170 1647 9
bal 1969 318 1651 16
bos 1998 247 1751 12
cha 2101 288 1813 14
cle 2003 265 1738 13
det 1995 122 1873 6
kca 1948 274 1674 14
min 2011 235 1776 12
nya 1902 394 1508 21
oak 1980 244 1736 12
sea 1910 201 1709 11
tba 1724 376 1348 22
tex 1811 203 1608 11
tor 1919 328 1591 17

 

2015

Team GB Shifted Not shifted % Shifted
ari 1709 355 1354 21
atl 1543 207 1336 13
chn 1553 239 1314 15
cin 1584 271 1313 17
col 1741 533 1208 31
hou 1667 682 985 41
lan 1630 220 1410 13
mil 1603 268 1335 17
nyn 1610 203 1407 13
phi 1673 237 1436 14
pit 1797 577 1220 32
sdn 1608 320 1288 20
sln 1680 266 1414 16
sfn 1610 333 1277 21
was 1530 181 1349 12
mia 1591 229 1362 14
ala 1493 244 1249 16
bal 1554 383 1171 25
bos 1616 273 1343 17
cha 1585 230 1355 15
cle 1445 335 1110 23
det 1576 349 1227 22
kca 1491 295 1196 20
min 1655 388 1267 23
nya 1619 478 1141 30
oak 1599 361 1238 23
sea 1663 229 1434 14
tba 1422 564 858 40
tex 1603 297 1306 19
tor 1539 398 1141 26

 

The individual fielding data (UZR) for infielders that you see on Fangraphs is based on non-shifted ground balls only, or on ground balls where there was a shift but it wasn’t relevant to the outcome. The reason that shifts are ignored in UZR (and DRS, I think) is because we don’t know where the individual fielders are located. It could be a full shift, a partial shift, the third baseman could be the left-most fielder as he usually is or he could be the man in short right field between the first baseman and the second baseman, etc. The way most of the PBP defensive metrics work, it would be useless to include this data.

But what we can do, with impunity, is to include all ground ball data in a team UZR. After all, if a hard ground ball is hit at the 23 degree vector, and we are only interested in team fielding, we don’t care who is the closest fielder or where he is playing. All we care about is whether the ball was turned into an out, relative to the league average out rate for a similar ground ball in a similar or adjusted for context. In other words, using the same UZR methodology, we can calculate a team UZR using all ground ball data, with no regard for the configuration of the IF on any particular play. And if it is true that the type, number and timing (for example, against which batters and/or with which pitchers) of shifts is relevant to a team’s overall defensive efficiency, team UZR in the infield should reflect not only the sum of individual fielding talent and performance, but also the quality of the shift in terms of hit prevention. In addition, if we subtract the sum of the individual infielders’ UZR on non-shift plays from the total team UZR on all plays, the difference should reflect, at least somewhat, the quality of the shifts.

I want to remind everyone that UZR accounts for several contexts. One, park factors. For infield purposes, although the dimensions of all infields are the same, the hardness and quality of the infield can differ from park to park. For example, in Coors Field in Colorado and Chase Field in Arizona, the infields are hard and quick, and thus more ground balls scoot through for hits even if they leave the bat with the same speed and trajectory.

Two, the speed of the batter. Obviously faster batters require the infielders to play a little closer to home plate and they beat out infield ground balls more often than slower batters. In some cases the third baseman and/or first baseman have to play in to protect against the bunt. This affects the average “caught percentage” for any given category of ground balls. The speed of the opposing batters tends to even out for fielders and especially for teams, but still, the UZR engine tries to account for this just in case it doesn’t, especially in small samples.

The third context is the position of the base runners and number of outs. This affects the positioning of the fielders, especially the first baseman (whether first base is occupied or not). The handedness of the batters is the next context. As with batter speed, these also tend to even out in the long run, but it is better to adjust for them just in case.

Finally, the overall GB propensity of the pitchers is used to adjust the average catch rates for all ground balls. The more GB oriented a pitcher is, the softer his ground balls are. While all ground balls are classified in the data as soft, medium, or hard, even within each category, the speed and consequently the catch rates, vary according to the GB tendencies of the pitcher. For example, for GB pitchers, their medium ground balls will be caught at a higher rate than the medium ground balls allowed by fly ball pitchers.

So keep in mind that individual and team UZR adjust as best as it can for these contexts. In most cases, there is not a whole lot of difference between the context adjusted UZR numbers and the unadjusted ones. Also keep in mind that the team UZR numbers you see in this article are adjusted for park, batter hand and speed, and runners/outs, the same as the individual UZR’s you see on Fangraphs.

For this article, I am interested in team UZR including when the IF is shifted. Even though we are typically interested in individual defensive performance and talent, it is becoming more and more difficult to evaluate individual fielding for infielders, because of the prevalence of the shift, and because there is so much disparity in how often each team employs the shift (so that we might be getting a sample of only 60% of the available ground balls for one team and 85% for another).

One could speculate that teams that employ the most shifts would have the best team defense. To test that, we could look at each team’s UZR versus their relevant shift percentage. The problem, of course, is that the talent of the individual fielders is a huge component of team UZR, regardless of how often a team shifts. There may also be selective sampling going on. Maybe teams that don’t have good infield defense feel the need to shift more often such that lots of shifts get unfairly correlated with (but are not the cause of) bad defense.

One way we can separate out talent from shifting is to compare team UZR on all ground balls with the total of the individual UZR’s for all the infielders (on non-shifted ground balls). The difference may tell us something about the efficacy of the shifts and non-shifts. In other words, total team individual infield UZR, which is just the total of each infielder’s UZR as you would see on Fangraphs (range and ROE runs only), represents what we generally consider to be a sample of team talent. This is measured on non-shifted ground balls only, as explained above.

Team total UZR, which measures team runs saved or cost, with no regard for who caught each ball or not, and is based on every batted ball, shifted or not, represents how the team actually performed on defense and is a much better measure of team defense than totaling the individual UZR’s. The difference, then, to some degree, represents how efficient teams are at shifting or not shifting, regardless of how often they shift.

There are lots of issues that would have to be considered when evaluating whether shifts work or not. For example, maybe shifting too much with runners on base results in fewer DP because infielders are often out of position. Maybe stolen bases are affected for the same reason. Maybe the number and quality of hits to the outfield change as a result of the shift. For example, if a team shifts a lot, maybe they don’t appear to record more ground ball outs, but the shifted batters are forced to try and hit the ball to the opposite field more often and thus they lose some of their power.

Maybe it appears that more ground balls are caught, but because pitchers are pitching “to the shift” they become more predictable and batters are actually more successful overall (despite their ground balls being caught more often). Maybe shifts are spectacularly successful against some stubborn and pull-happy batters and not very successful against others who can adjust or even take advantage of a shift in order to produce more, not less, offense. Those issues are beyond the scope of UZR and this article.

Let’s now look at each team in 2014 and 2015, their shift percentage, their overall team UZR, their team UZR when shifting, when not shifting, and their total individual combined UZR when not shifting. Remember this is for the infield only.

2015

Team % Shifts Shift Runs Non-Shift Runs Team Runs Total Individual Runs Team Minus Individual after prorating Ind Runs to 100% of plays
KCA 20 -2.2 10.5 10 26.3 -19.6
LAN 13 -5 -7.3 -13.3 0.8 -14.2
TOR 26 -2.5 13.9 11 22.6 -15.6
CHA 15 -7.7 -12.3 -21.8 -11.9 -8.9
CLE 23 0.6 3.3 3.3 12.8 -11.4
MIN 23 3.5 -11.6 -7.6 1.8 -9.7
MIL 17 0.3 -7.1 -6.7 2.5 -9.5
SEA 14 -2.6 -8.7 -13.8 -5.1 -8.3
SFN 21 2.3 12.6 15.8 24.4 -11.8
MIA 14 0.5 2.7 2.4 8.4 -6.7
ARI 21 3.4 -1.5 2.1 8 -7.0
HOU 41 -7.6 -3.2 -11.3 -6.1 -3.1
PHI 14 -6.4 -16.4 -23.5 -19 -3.0
COL 31 -7.3 0 -5.5 -1.5 -3.7
ATL 13 3.1 6.9 9.8 12.6 -3.7
SLN 16 -1.1 -5.8 -8.8 -7 -1.1
DET 22 1.8 -16.2 -17.8 -16 0.5
ALA 16 -2.4 -0.4 -3.6 -2.8 -0.5
BOS 17 0.3 4.8 3.5 2.7 0.5
NYN 13 -3.8 3.1 0.8 -2.7 3.7
WAS 12 1.1 -9.4 -8.4 -12.6 5.1
CIN 17 5 9.8 16.2 11.2 3.9
CHN 15 0.2 18.7 17.4 10.5 6.0
BAL 25 10.6 -0.5 14.4 5.8 7.6
SDN 20 7.5 -6.8 1.5 -7.8 10.3
TEX 19 4.1 12.8 19.6 10.1 8.3
TBA 40 0.1 4.5 7 -9.2 19.3
NYA 30 0.1 11.8 12.2 -6.6 20.2
PIT 32 0.3 0.3 0.1 -21 26.0
OAK 23 3.9 -8.8 -5 -31.4 31.1

 

The last column, as I explained above, represents the difference between how we think the infield defense performed based on individual UZR’s only (on non-shifted GB), prorated to 100% of the games (the proration is actually regressed so that we don’t have the “on pace for” problem), and how the team actually performed on all ground balls. If the difference is positive, then we might assume that the shifts and non-shifts are being done in an effective fashion regardless of how often shifts are occurring. If it is negative, then somehow the combination of shifts and non-shifts are costing some runs. Or the difference might not be meaningful at all – it could just be noise. At the very least, this is the first time that you are seeing real infield team defense being measured based on the characteristics of each and every ground ball and the context in which they were hit, regardless of where the infielders are playing.

First of all, if we look at all the teams that have a negative difference in the last column, the teams that presumably have the worst shift/no-shift efficiency, and compare them to those that are plus and presumably have the best shift/no-shift efficiency, we find that there is no difference in their average shift percentages. For example, TBA and HOU have the most shifts by far, and HOU “cost” their teams 5.2 runs and TBA benefited by 16.2 runs. LAN and WAS had the fewest shifts and one of them gained 4 runs and the other lost 14 runs.  The other teams are all over the board with respect to number of shifts and the difference between the individual UZR’s and team UZR.

Let’s look at that last column for 2014 and compare it to 2015 to see if there is any consistency from year to year within teams. Do some teams consistently do better or worse with their shifting and non-shifting, at least for 2014 and 2015? Let’s also see if adding more data gives us any relationship between the last column (delta team and individual UZR) and shift percentage.

Team 2015 % Shift 2014 % Shift 2015 Team Minus Individual 2014 Team Minus Individual Combined 2014 and 2015 Team Minus Individual
HOU 41 32 -5.2 45.6 40.4
TBA 40 22 16.2 12.7 28.9
PIT 32 17 21.1 5.5 26.6
TEX 19 11 9.5 9.9 19.4
WAS 12 6 4.2 13.0 17.2
OAK 23 12 26.4 -9.3 17.1
BAL 25 16 8.6 7.6 16.2
NYN 13 5 3.5 9.0 12.5
NYA 30 21 18.8 -8.4 10.4
CHA 15 14 -9.9 12.5 2.6
CHN 15 8 6.9 -5.8 1.1
TOR 26 17 -11.6 12.6 1.0
DET 22 6 -1.8 2.4 0.6
SFN 21 10 -8.6 6.0 -2.6
CIN 17 6 5 -8.2 -3.2
CLE 23 13 -9.5 5.2 -4.3
MIL 17 13 -9.2 3.1 -6.1
ARI 21 8 -5.9 -0.2 -6.1
SDN 20 7 9.3 -15.7 -6.4
MIA 14 6 -6 -0.9 -6.9
BOS 17 12 0.8 -10.6 -9.8
KCA 20 14 -16.3 6.3 -10.0
ATL 13 6 -2.8 -7.5 -10.3
PHI 14 8 -4.5 -6.2 -10.7
ALA 16 9 -0.8 -11.6 -12.4
SLN 16 10 -1.8 -12.2 -14.0
LAN 13 6 -14.1 -2.5 -16.6
MIN 23 12 -9.4 -9.3 -18.7
SEA 14 11 -8.7 -11.3 -20.0
COL 31 4 -4 -23.0 -27.0

 

Although there appears to be little correlation from one year to the next for each of the teams, we do find that of the teams that had the least efficient shifts/non-shifts (negative values in the last column), they averaged 14% shifts per season in 2014 and 2015. Those that had the most effective (plus values in the last column) shifted an average of 19% in 2014 and 2015. As well, the two teams with the biggest gains, HOU and TB, had the most shifts, at 37% and 31% per season, respectively. The two worst teams, Colorado and Seattle, shifted 17% and 13% per season. On the other hand, the team with the least shifts in baseball in 2014 and 2015 combined, the Nationals, gained over 17 runs in team UZR on all ground balls compared to a total of the individual UZR’s on non-shifted balls only, suggesting that the few shifts they employed were very effective, which seems reasonable.

It is also interesting to note that the team that had the worst difference in team and individual UZR in 2014, the Rockies, only shifted 4% of the time, easily the worst in baseball. In 2015, they have been one of the most shifted teams and still their team UZR is 4 runs worse than their total individual UZR’s. Still, that’s a lot better than in 2014.

It also appears that many of the smarter teams are figuring out how to optimize their defense beyond the talent of the individual players. TB, PIT, HOU, WAS, and OAK are at the top of the list in plus value deltas (the last column). These teams are generally considered to have progressive front offices. Some of the teams with the most negative numbers in the last column, those teams which appear to be sub-optimal in their defensive alignment, are LAN, MIN, SEA, PHI, COL, ATL, SLN, and ALA, all with reputations for having less than progressive front offices and philosophies, to one degree or another. In fact, other than a few outliers, like Boston, Texas, and the White Sox, the order of the teams in the chart above looks like a reasonable order of teams from most to least progressive teams. Certainly the teams in the top half appear to be the most saber-savvy teams and those in bottom half, the least.

In conclusion, it is hard to look at this data and figure out whether and which teams are using their shifts and non-shifts effectively. There doesn’t appear to be a strong correlation between shift percentage and the difference between team and individual defense although there are a few anecdotes that suggest otherwise. As well, in the aggregate for 2014 and 2015 combined, teams that have been able to outperform on team defense the total of their individual UZR’s have shifted more often, 19% to 13%.

There also appears to the naked eye to be a strong correlation between the perceived sabermetric orientation of a team’s front office and the efficiency of their shift/non-shift strategy, at least as measured by the numbers in the last column, explained above.

I think the most important thing to take away from this discussion is that there can be a fairly large difference between team infield UZR which uses every GB, and the total of the individual UZR’s which uses only those plays in which no shift was relevant to the outcome of the play. As well, the more shifts employed by a team, the less we should trust that the total of the individual performances are representative of the entire team’s defense on the infield. I am also going to see if Fangraphs can start publishing team UZR for infielders and for outfielders, although in the outfield, the numbers should be similar if not the same.

Advertisement

Ok, enough of the bad Posnanski and Woody Allen rants and back to some interesting baseball analysis – sort of. I’m not exactly sure what to make of this, but I think you might find it interesting, especially if you are a fan of a particular team, which I’m pretty sure most of you are.

I went back five years and compared every team’s performance in each and every game to what would be expected based on their lineup that day, their starting pitcher, an estimate of their reliever and pinch hitter usage for that game, as well as the same for their opponent. Basically, I created a win/loss model for every game over the last five years. I didn’t simulate the game as I have done in the past. Instead, I used a theoretical model to estimate mean runs scored for each team, given a real-time projection for all of the relevant players, as well as the run-scoring environment, based on the year, league, and ambient conditions, like the weather and park (among other things).

When I say “real-time” projections, they are actually not up-to-the game projections. They are running projections for the year, updated once per month. So, for the first month of every season, I am using pre-season projections, then for the second month, I am using pre-season projections updated to include the first month’s performance, etc.

For a “sanity check” I am also keeping track of a consensus expectation for each game, as reflected by the Las Vegas line, the closing line at Pinnacle Sports Book, one of the largest and most respected online sports books in the internet betosphere.

The results I will present are the combined numbers for all five years, 2009 to 2013. Basically, you will see something like, “The Royals had an expected 5-year winning% of .487 and this is how they actually performed – .457.” I will present two expected WP actually – one from my models and one from the Vegas line. They should be very similar. What is interesting of course is the amount that the actual WP varies from the expected WP for each team. You can make of those variations what you want. They could be due to random chance, bad expectations for whatever reasons, or poor execution by the teams for whatever reasons.

Keep in mind that the composite expectations for the entire 5-year period are based on the expectation of each and every game. And because those expectation are updated every 6 months by my model and presumably every day by the Vegas model, they reflect the changing expected talent of the team as the season progresses. By that, I mean this: Rather than using a pre-season projection for every player and then applying that to the personnel used or presumed used (in the case of the relievers and pinch hitters) in every game that season, after the first 30 games, for example, those projections are updated and thus reflect to some extent, actual performance that season. For example, last year, pre-season, Roy Halladay might have been expected to have a 3.20 ERA or something like that. After he pitched horribly for a few weeks or months, and it was well-known that he was injured, his expected performance presumably changed in my model as well as in the Vegas model. Again, the Vegas model likely changes every day, whereas my model can only change after each month, or 5 times per season.

Here are the combined results for all five years (NL 2009-2013):

Team

My Model

Vegas

Actual

My Exp. Starting Pitching (RA9-)

Actual Starting Pitching (FIP-)

My Exp. Batting (marginal rpg)

Actual Batting (marginal rpg)

ARI

.496

.495

.486

103

103

0

-.08

ATL

.530

.545

.564

100

97

.25

.21

CHC

.488

.478

.446

103

102

-.09

-17

CIN

.522

.517

.536

104

108

.01

.12

COL

.494

.500

.486

102

96

-.04

-.09

MIA

.493

.472

.453

102

102

.01

-.05

LAD

.524

.526

.542

96

99

.02

-.03

MLW

.519

.509

.504

105

108

.13

.30

NYM

.474

.470

.464

106

108

-.02

.01

PHI

.516

.546

.554

96

98

-.01

.07

PIT

.461

.454

.450

109

111

-.19

-.28

SDP

.469

.463

.483

110

115

-.12

-.26

STL

.532

.554

.558

100

98

.23

.40

SFG

.506

.518

.515

98

102

-.19

-.30

WAS

.497

.484

.486

103

103

.01

.07

If you are an American league fan, you’ll have to wait until Part II. This is a lot of work, guys!

By the way, if you think that the Vegas line is remarkably good, and much better than mine, it is at least partly an illusion. They get to “cheat,” and to some extent they do. I can do the same thing, but I don’t. I am not looking at the expected WP and result of each game and then doing some kind of RMS error to test the accuracy of my model and the Vegas “model” on a game-by-game basis. I am comparing the composite results of each model to the composite W/L results of each team, for the entire 5 years. That probably makes little sense, so here is an example which should explain what I mean by the oddsmakers being able to “cheat,” thus making their composite odds close to the actual odds for the entire 5-year period.

Let’s say that before the season starts Vegas thinks that the Nationals are a .430 team. And let’s say that after 3 months, they were a .550 team. Now, Vegas by all rights should have them as something like a .470 team for the rest of the season – numbers for illustration purposes only – and my model should too, assuming that I started off with .430 as well. And let’s say that the updated expected WP of .470 were perfect and that they went .470 for the second half. Vegas and I would have a composite expected WP of .450 for the season, .430 for the first half and .470 for the second half. The Nationals record would be .510 for the season, and both of our models would look pretty bad.

However, Vegas, to some extent uses a team’s W/L record to-date to set the lines, since that’s what the public does and since Vegas assumes that a team’s W/L record, even over a relatively short period of time, is somewhat indicative of their true talent, which it is of course. After the Nats go .550 for the first half, Vegas can set the second-half odds as .500 rather than .470, even if they think that .470 is truly the best estimate of their performance going forward.

One they do that, their composite expected WP for the season will be (.430 + .500) / 2, or .465, rather than my .450. And even if the .470 were correct, and the Nationals go .470 for the second half, whose composite model is going to look better at the end of the season? Theirs will of course.

If Vegas wanted to look even better for the season, they can set the second half lines to .550, on the average. Even if that is completely wrong, and the team goes .470 over the second half, Vegas will look even better at the end of the season! They will be .490 for the season, I will be .450, and the Nats will have a final W/L percentage of .490! Vegas will look perfect and I will look bad, even though we had the same “wrong” expectation for the first half of the season, and I was right on the money for the second half and they were completely and deliberately wrong. Quite the paradox, huh? So take those Vegas lines with a grain of salt as you compare them to my model and to the final composite records of the teams. I’m not saying that my model is necessarily better than the Vegas model, only that in order to fairly compare them, you would have to take them one game at a time, or always look at each team’s prospective results compared to the Vegas line or my model.

Here is the same table as above, ordered by the difference between my expected w/l percentage and each team’s actual w/l percentage. The firth column is that difference. Call those differences whatever you want – luck, team “efficiency,” good or bad managing, player development, team chemistry, etc. I hope you find these numbers as interesting as I do!

Combined results for all five years (NL 2009-2013), in order of the “best” teams to the “worst:”

Team

My Model

Vegas

Actual

Difference

My Exp. Starting Pitching (RA9-)

Actual Starting Pitching (FIP-)

My Exp. Batting (marginal rpg)

Actual Batting (marginal rpg)

PHI

.516

.546

.554

.038

96

98

-.01

.07

ATL

.530

.545

.564

.034

100

97

.25

.21

STL

.532

.554

.558

.026

100

98

.23

.40

LAD

.524

.526

.542

.018

96

99

.02

-.03

SDP

.469

.463

.483

.014

110

115

-.12

-.26

CIN

.522

.517

.536

.014

104

108

.01

.12

SFG

.506

.518

.515

.009

98

102

-.19

-.30

COL

.494

.500

.486

-.008

102

96

-.04

-.09

NYM

.474

.470

.464

-.010

106

108

-.02

.01

PIT

.461

.454

.450

-.010

109

111

-.19

-.28

ARI

.496

.495

.486

-.010

103

103

0

-.08

WAS

.497

.484

.486

-.011

103

103

.01

.07

MLW

.519

.509

.504

-.015

105

108

.13

.30

MIA

.493

.472

.453

-.040

102

102

.01

-.05

CHC

.488

.478

.446

-.042

103

102

-.09

-.17

As you can see from either chart, it appears as if my model over-regresses both batting and starting pitching, especially the former.

Also, a quick and random observation from the above chart – it may mean absolutely nothing. It seems as though those top teams, most of them at least, have had notable, long-term, “players’ managers,” like Manuel, LaRussa, Mattingly, Torre, Black, Bochy, and Baker, while you might not be able to even recall or name most of the managers of the teams at the bottom. It will be interesting to see if the American League teams evince a similar pattern.