Now that Adam Eaton has been traded from the White Sox to the Nationals much has been written about his somewhat unusual “splits” in his outfield defense as measured by UZR and DRS, two of the more popular batted-ball defensive metrics. In RF, his career UZR per 150 games is around +20 runs and in CF, -8 runs. He has around 100 career games in RF and 300 in CF. These numbers do not include “arm runs” as I’m going to focus only on range and errors in this essay. If you are not familiar with UZR or DRS you can do some research on the net or just assume that they are useful metrics for quantifying defensive performance and for projecting defense.
In 2016 Eaton was around -13 in CF and +20 in RF. DRS was similar but with a narrower (but still unusual) spread. We expect that a player who plays at both CF and the corners in a season or within a career will have a spread of around 5 or 6 runs between CF and the corners (more between CF and RF than between CF and LF). For example, a CF’er who has a UZR of zero and thus is exactly average among all CF’ers, will have a UZR at around +5.5 at the corners, again a bit more in RF than LF (LF’ers are better fielders than RF’ers).
This has nothing to do with how “difficult” each position is (that is hard to define anyway – you could even make the argument that the corner positions are “harder” than CF), as UZR and DRS are calculated as runs above or below the average fielder at that position. It merely means that the average CF’er is a better fielder than the average corner OF’er by around 5 or 6 runs. Mostly they are faster. The reason teams put their better fielder in CF is not because it is an inherently more “difficult” position but because it gets around twice the number of opportunities per game than the corner positions such that you can leverage talent in the OF.
Back to Eaton. He appears to have performed much better in RF than we would expect given his performance in CF (or vice versa) or even overall. Does this mean that he is better suited to RF (and perhaps LF, where he hasn’t played much in his career) or that the big, unusual gap we see is just a random fluctuation, or somewhere in the middle as is often (usually) the case? Should the Nationals make every effort to play him in RF and not CF? After all, their current RF’er, Harper, has unusual splits too, but in the opposite direction – his career CF UZR is better than his career RF UZR! Or perhaps the value they’re getting from Eaton is diminished if they’re going to play him in CF rather than RF.
How could it be that a fielder could have such unusual defensive splits and it be solely or mostly due to chance only? The same reason a hitter can have unusual but random platoon splits or a pitcher can have unusual but random home/road or day/night splits. A metric like UZR or DRS, like almost all metrics, contains a large element of chance, or noise if you will. That noise comes from two sources – one is because the data and methodology are far from perfect and two is that actual defensive performance can fluctuate randomly (or for reasons we are just not aware of) from one time period to another – from play to play, game to game, or position to position, for various reasons or for no reason at all.
To the first point, just because our metric “says” that a player was +10 in UZR that does not necessarily mean that he performed exactly that well. In reality, he might have performed at a +15 level or he might have performed at a 0 or even a -10 level. It’s more likely of course that he performed at +5 than +20 or 0, but because of the limits of our data and methodology, the +15 is an estimate of his performance. To the second point, actual fielding performance, even if we could measure it precisely, like hitting and pitching, is subject to random fluctuations for reasons known (or at least speculated) and unknown to us. On one play a player can get a great jump and make a spectacular play and on another that same player can take a bad route, get a bad jump, the ball can pop out of his glove, etc. Some days fielders probably feel better than others. Etc.
So whenever we compare one time period to another or one position to another, even ones which require similar, perhaps even identical, skills, like in the OF, it is possible, even likely, that we are going to get different results by chance alone, or at least because of the two dynamics I explained above (don’t get hung up on the words “luck”, “chance” or “random”). Statistics tell us that those random differences will be more and more unlikely the further away we get from what is expected (e.g., we expect that play in CF will be 5 or 6 runs “worse” than play in RF or LF), however, statistics also tells us that any difference, even large ones like we see with Eaton (or more), can and do occur by chance alone.
At the same time, it is possible, maybe even likely, that a player could somehow be more suited to RF (or LF) than CF, or vice versa. So how do we determine how much of an unusual “split” in OF defense, for example, is likely chance and how much is likely “skill?” In other words, what would we expect future defense to be in RF and in CF for a player with unusual RF/CF splits? Remember that future performance always equates to an estimate of talent, more or less. For example, if we find strong evidence that almost all of these unusual splits are due to chance alone (virtually no skill), then we must assume that in the future the player with the unusual splits will revert to normal splits in any future time frame. In the case of Eaton that would mean that we would construct an OF projection based on all of his OF play, adjusted for position, and then do the normal adjustment for our CF or RF projection, such that his RF projection will be around 7 runs greater than his CF projection rather than the 20 run or more gap that we see in his past performance.
To examine this question, I looked at all players who played at least 20 games in CF and RF or LF from 2003 through 2015. I isolated those with various unusual splits. I also looked at all players to establish a baseline. At the same time, I crafted a basic one-season Marcel-like projection from that CF and corner performance combined. The way I did that was to adjust the corners to represent CF by subtracting 4 runs from LF UZR and 7 runs from RF UZR. Then I regressed that number based on the number of total games in that one season, added in an aging factor (-.5 runs for players under 27 and -1.5 runs for players 27 and older), and the resulting number was a projection for CF.
We can then take that number and add 4 runs for a LF projection and 7 runs for a RF projection. Remember these are range and errors only (no arm). So, for example, if a player was -10 in CF per 150 in 50 games and +3 in RF in 50 games, his projection would be:
Subtract 7 runs from his RF UZR to convert into “CF UZR”, so it’s now -4. Average that with his -10 UZR in CF, which gives him a total of -7 runs in 100 games. I am using 150 games as the 50% regression point so we regress this player 150/(150+100) or 60% toward a mean of -3 (because these are players who play both CF and corner, they are below average CF’ers). That comes out to -1.6. Add in an aging factor, say -.5 for a 25-year old and we get a projection of -2.1 for CF. That would mean a projection of +1.9 in LF, a +4 run adjustment and +4.9 in RF, a +7 run adjustment, assuming normal “splits.”
So let’s look at some numbers. To establish a baseline and test (and calibrate) our projections, let’s look at all players who played CF and LF or RF in season one (min 20 games in each) and then their next season in either CF or the corners:
UZR season one | UZR season two | Projected UZR | |
LF or RF | +6.0 (N games=11629) | 2.1 (N=42866) | 2.1 |
CF | -3.0 (N=9955) | -.8 (23083) | -.9 |
The spread we see in column 2, “UZR season one” is based on the “delta method”. It is expected to be a little wider than the normal talent spread we expect between CF and LF/RF which is around 6 runs. That is because of selective sampling. Players who do well at the corners will tend to also play CF and players who play poorly in CF will tend to get some play at the corners. The spread we see in column 3, “UZR season two” does not mean anything per se. In season two these are not necessarily players who played both positions again (they played either one or the other or both). All it means is that of players who played both positions in season one, they are 2.1 runs above average at the corners and .8 runs below average in CF, in season two.
Now let’s look at the same table for players like Eaton, who had larger than normal splits between a corner position and CF. I used a threshold of at least a 10-run difference (5.5 is typical). There were 254 players who played at least 20 games in CF and in RF or LF in one season and then played in LF in the next season, and 138 players who played in CF and LF or RF in one season and in RF in the next.
UZR season one | UZR season two | Projected UZR | |
LF or RF | +12.7 (N games=4924) | 1.4 | |
CF | -12.3 (N=4626) | .3 |
For now, I’m leaving the third column, their UZR in season two, empty. These are players who appeared to be better suited at a corner position than in CF. If we assume that these unusual splits are merely noise, a random fluctuation, and that we expect them to have a normal split in season two, we can use the method I describe above to craft a projection for them. Notice the small split in the projections. The projection model I am using creates a CF projection and then it merely adds +4 runs for LF and +7 for RF. Given a 25-run split in season one rather than a normal 6-run split, we might assume that these players will play better, maybe much better, in RF or LF than in CF, in season two. In other words, there is a significant “true talent defensive split” in the OF. So rather than 1.4 in LF or RF (our projection assumes a normal split), we might see a performance of +5, and instead of .3 in CF, we might see -5, or something like that.
Remember that our projection doesn’t care how the CF and corner OF UZR’s are distributed in season one. It assumes static talent and just converts corner UZR to CF UZR by subtracting 4 or 7 runs. Then when it finalizes the CF projection, it assumes we can just add 4 runs for a LF projection and 7 runs for a RF one. It treats all OF positions the same, with a static conversion, regardless of the actual splits. The projection assumes that there is no such thing as “true talent OF splits.”
Now let’s see how well the projection does with that assumption (no such thing as “true talent OF defensive splits”). Remember that if we assume that there is “something” to those unusual splits, we expect our CF projection to be too high and our LF/RF projection to be too low.
UZR season one | UZR season two | Projected UZR | |
LF or RF | +12.7 (N games=4924) | .9 (N=16857) | 1.4 |
CF | -12.3 (N=4626) | .8 (N=10250) | .3 |
We don’t see any evidence of a “true talent OF split” when we compare projected to actual. In fact, we see the opposite effect, which is likely just noise (our projection model is pretty basic and not very precise). Instead of seeing better than expected defense at the corners as we might expect from players like Eaton who had unusually good defense at the corners compared to CF in season one, we see slightly worse than projected defense. And in CF, we see slightly better defense than projected even though we might have expected these players to be especially unsuited to CF.
Let’s look at players, unlike Eaton, who have “reverse” splits. These are players who in at least 20 games in both CF and LF or RF, had a better UZR in CF than at the corners.
UZR season one | UZR season two | Projected UZR | |
LF or RF | -4.8 (N games=3299) | 1.4 (N=15007) | 2.4 |
CF | 7.8 (N=3178) | -4.4 (N=6832) | -2.6 |
Remember, the numbers in column two, season one UZR “splits” are based on the delta method. Therefore, every player in our sample had a better UZR in CF than in LF or RF and the average difference was 12.6 runs (in favor of CF) whereas we expected an average difference of minus 6 runs or so (in favor of LF/RF). The “delta method” just means that I averaged all of the players’ individual differences weighted by the lesser of their games, either in CF or LF/RF.
Again, according to the “these unusual splits must mean something” (in terms of talent and what we expect in the next season) theory, we expect these players to significantly exceed their projection in CF and undershoot it at the corners. Again, we don’t see that. We see that our projections are high for both positions; in fact we overshoot more in CF than in RF/LF exaclty the opposite of what we would expect if there were any significance to these unusual splits. Again we see no evidence of a “true talent split in OF defense.”
For players with unusual splits in OF defense, we see that a normal projection at CF or at the corners suffices. We treat LF/RF/CF UZR exactly the same making static adjustments regardless of the direction and magnitude of the empirical splits. What about the idea that, “We don’t know what to expect with a player like Eaton?” I don’t really know what that means, but we hear it all the time when we see numbers that look unusual or “trendy” or appear to follow a “pattern.” Does that mean we expect there to be more fluctuation in season two UZR? Perhaps even though on the average they revert to normal spreads, we see a wider spread of results in these players who exhibit unusual splits in season one. Let’s look at that in our final analysis.
When we look at all players who played CF and LF/RF in season one, remember the average spread was 9 runs, +6 at the corners and -3 in CF. In season two, 28% of the players who played RF or LF had a UZR greater than +10 and 26% in CF had a UZR of -10 or worse. The standard deviation of the distribution in season two UZR was 13.9 runs for LF/RF and 15.9 in CF
What about our players like Eaton? Can we expect more players to have a poor UZR in CF and a great one at a corner? No. 26% of these players had a UZR greater than +10 and 25% had a UZR less than -10 on CF, around the same as all “dual” players in season one. In fact we get a smaller spread with these players with unusual splits as we would expect given that their means in CF and at the corners are actually closer together (look at the tables above). The standard deviation of the distribution in season two UZR for these players was 13.2 runs for LF/RF and 15.3 in CF, slightly smaller than for all “dual” players combined.
In conclusion, there is simply nothing to write about when it comes to Eaton’s or anyone else’s unusual outfield UZR or DRS splits. If you want to estimate their UZR going forward simply adjust and combine all of their OF numbers and do a normal projection. It doesn’t matter if they have -16 in LF and +20 in CF, 0 runs in CF only, or +4 runs in LF only. It’s all the same thing with exactly the same projection and exactly the same distribution of results the next season.
As far as we can tell there is simply no such thing (to any significant or identifiable degree) as an outfielder who is more suited to one OF position than another. There is outfield defense – period. It doesn’t matter where you are standing in the OF. The ability to catch line drives and fly balls in the OF is more or less the same whether you are standing in the middle or on the sides of the OF (yes it could take some time to get used to a position if you are unfamiliar with it). If you are good in one location you will be good at another, and if you are bad at one location you will be bad at another. Your UZR or DRS might change in a somewhat predictable fashion depending upon what position, CF, LF, or RF is being measured, but that’s only because the players you are measured against (those metrics are relative) differ in their average ability to catch fly balls and line drives. More importantly, when you see a player who has an unusual “split” in their outfield numbers, like Eaton, you will be tempted to think that they are intrinsically better at one position than another and that the unusual split will tend to continue in the future. When you see really large splits you will be tempted even more. Remember the words in this paragraph and remember this analysis to avoid being fooled by randomness into drawing faulty conclusions, as all human beings, even smart ones, are wont to do.